
671

0022-4715/02/1100-0671/0 © 2002 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 109, Nos. 3/4, November 2002 (© 2002)

When Do Tracer Particles Dominate the Lyapunov
Spectrum?

Pierre Gaspard1 and Henk van Beijeren2

1 Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles,
Campus Plaine, Code Postal 231, 1050 Brussels, Belgium; e-mail: gaspard@ulb.ac.be
2 Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles,
Campus Plaine, Code Postal 231, 1050 Brussels, Belgium and Institute for Theoretical
Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands.

Received December 6, 2001; accepted March 2, 2002

Dynamical instability is studied in a deterministic dynamical system of Hamil-
tonian type composed of a tracer particle in a fluid of many particles. The tracer
and fluid particles are hard balls (disks, in two dimensions, or spheres, in three
dimensions) undergoing elastic collisions. The dynamical instability is charac-
terized by the spectrum of Lyapunov exponents. The tracer particle is shown to
dominate the Lyapunov spectrum in the neighborhoods of two limiting cases:
the Lorentz-gas limit in which the tracer particle is much lighter than the fluid
particles and the Rayleigh-flight limit in which the fluid particles have a vanish-
ing radius and form an ideal gas. In both limits, a gap appears in the Lyapunov
spectrum between the few largest Lyapunov exponents associated with the
tracer and the rest of the Lyapunov spectrum.
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1. INTRODUCTION

During the last decade, dynamical instability and chaos in systems of
interacting particles has become a problem of major concern in statistical
mechanics. Many systems have been shown to present sensitivity to initial
conditions characterized by positive Lyapunov exponents. (1, 2) Methods
from kinetic theory have been developed for the maximal Lyapunov expo-
nent and the Kolmogorov–Sinai entropy of dilute gases. (3–9) The relation-
ships to transport properties have also been investigated. (10–13)



In mixtures of a one-component fluid with a very low concentration
of identical tracer particles the largest Lyapunov exponent may either be
virtually identical to the largest Lyapunov exponent of the pure fluid (with
just a slight perturbation caused by the tracer particles), or it may be larger,
due to the dynamical properties of the tracer particles. In the latter case
one may say that the largest Lyapunov exponent is dominated by the tracer
particles.
The purpose of the present paper is to describe the regimes in which

the tracer particles dominate the dynamical instability of the fluid system.
If the mass of the tracer particle is not much larger than that of the fluid
particles, and in addition the mean free path of both bath and tracer par-
ticles are at least comparable in length to their respective radii, the charac-
teristic Lyapunov exponents for fluid and tracer dynamics respectively are
roughly of the order of their respective collision frequencies. So in this case
one may conclude that the tracer particle will dominate if its collision
frequency is sufficiently larger than that of the fluid particles.
One obvious way to reach this goal is by making the mass ratio M/m

of tracer mass over fluid particle mass very small. The limit where this ratio
goes to zero corresponds to the Lorentz gas, for which the Lyapunov
exponents of the tracer particle were derived several years ago. (3, 5, 8)

Another common situation is where the radius of the tracer particles is
much larger than that of the fluid particles, e.g., when one satisfies the
conditions for Brownian motion, where also the mass of the tracer particle
is much larger than that of the fluid particles. In this case the collision
frequency of the tracer particles is much higher than that of the fluid par-
ticles, but at the same time the velocity changes of the tracer particle in
collisions with a bath particle are much smaller than those of the bath par-
ticles themselves. In addition the curvature of the Brownian particle, due to
its large radius, is much smaller than that of a fluid particle and therefore
the diverging effect (crucial for a positive Lyapunov exponent) of a Brow-
nian-fluid collision is much smaller than that of a fluid–fluid collision. As a
result of this the largest Lyapunov exponent usually is determined by the
fluid particles, as noted both by Louis and Gaspard (14) and by Nasser and
Dorfman. (15) However, there is one noteworthy exception to this, corre-
sponding to the so-called Rayleigh-flight limit, where at fixed Brownian
mass and radius the radius of the fluid particles is sent to zero. In the
extreme limit of a Brownian gas surrounded by an ideal gas it is obvious
that the Brownian particle has to dominate, as the Lyapunov exponents of
the ideal gas are strictly zero. The goal of the present paper is thus to study
these cases of dominance of the Lyapunov spectrum by the tracer particle.
The plan of the paper is the following. In Section 2, the problem of

dynamical instability in a system of hard balls of different masses and radii
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is posed. In Section 3, we consider the Lorentz-gas limit. In Section 4, we
consider the Rayleigh-flight limit. Conclusions are drawn in Section 5.

2. THE DYNAMICAL SYSTEM AND ITS INSTABILITY

2.1. The Dynamics

In this paper we will consider a system composed of many fluid par-
ticles and one tracer particle. From a general viewpoint, this system can be
considered as a binary mixture of Nf fluid particles, which we take to be
hard balls of radius a and mass m, with Nt tracer particles, which will
likewise be hard balls, with radius A and massM. All the N=Nf+Nt hard
balls move in a rectangular domain of finite extension W with periodic
boundary conditions.
The motion of the hard balls is composed of free flights between

binary collisions which are elastic and instantaneous. Energy and the total
linear momenta are conserved.
For a system of hard balls of radii {ai}

N
i=1 and of masses {mi}

N
i=1,

the equations of motion are given as follows in terms of the positions
and velocities {r (−)i (tn), v

(−)
i (tn)}

N
i=1 and {r

(+)
i (tn), v

(+)
i (tn)}

N
i=1, respectively

before and after the collision at time tn:

1. Free Flight between Binary Collisions:

tn−1 Q tn: ˛
r (−)i (tn)=r (+)i (tn−1)+(tn−tn−1) v (+)i (tn−1)

v (−)i (tn)=v (+)i (tn−1)
(1)

2. Binary Collision:

tn: r (+)i =r (−)i (2)

tn: ˛v
(+)
i =v (−)i −2

mj
mi+mj

(eij · v
(−)
ij ) eij

v (+)j =v (−)j +2
mi

mi+mj
(eij · v

(−)
ij ) eij

v (+)k =v (−)k for k ] i, j

(3)

with the unit vector joining the centers of the ith and jth balls at the colli-
sion given by

eij —
r (±)i − r (±)j
ai+aj

(4)
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and the relative velocity vector

v (−)ij — v (−)i − v (−)j (5)

2.2. The Linearized Dynamics

The dynamical instability of this system is characterized by the rates
of exponential growth of infinitesimal perturbations on the positions and
velocities of the particles: dX={dri, dvi}

N
i=1. The rates are called the

Lyapunov exponents

l=lim
tQ.

1
t
ln
||dX(t)||
||dX(0)||

(6)

Depending on the initial perturbation dX(0) we may have as many differ-
ent Lyapunov exponents as there are independent directions in phase space.
Since the dynamics of the present hard-ball system is of Hamiltonian
(symplectic) character the Lyapunov exponents obey a pairing rule: If l i
is a Lyapunov exponent, then −l i is also a Lyapunov exponent. The set of
exponents form the so-called Lyapunov spectrum. The Lyapunov expo-
nents associated with the directions perpendicular to the energy and
momenta shells vanish. In the present system, which has no fixed points
except at zero energy, this also holds for the pair mates associated with
the directions of time and center-of-mass translation. Accordingly, 2+2d
Lyapunov exponents vanish.
The problem of the dynamical instability of a hard-ball system was

formulated in the seventies by Sinai (16) who was inspired by the pioneering
work of Krylov in the forties. (17) Independently, Erpenbeck and Wood
carried out numerical investigations, also in the seventies. (18) The systematic
calculation of the Lyapunov spectrum in hard-ball systems has been
developed in the nineties. Using the method of Gaspard and Dorfman (19)

one can derive the following linearized equations in terms of the infinite-
simal perturbations before and after each collision (14):

1. Free Flight Between Binary Collisions:

tn−1 Q tn: ˛
dr (−)i (tn)=dr

(+)
i (tn−1)+(tn−tn−1) dv

(+)
i (tn−1)

dv (−)i (tn)=dv
(+)
i (tn−1)

(7)
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2. Binary Collision:

tn: ˛dr
(+)
i =dr

(−)
i −2

mj
mi+mj

(eij ·dr
(−)
ij ) eij

dr (+)j =dr
(−)
j +2

mi
mi+mj

(eij ·dr
(−)
ij ) eij

dr (+)k =dr
(−)
k for k ] i, j

(8)

tn: ˛dv
(+)
i =dv

(−)
i −2

mj
mi+mj

[(eij ·dv
(−)
ij ) eij+(deij · v

(−)
ij ) eij+(eij · v

(−)
ij ) deij]

dv (+)j =dv
(−)
j +2

mi
mi+mj

[(eij ·dv
(−)
ij ) eij+(deij · v

(−)
ij ) eij+(eij · v

(−)
ij ) deij]

dv (+)k =dv
(−)
k for k ] i, j

(9)

with

deij=
1

ai+aj
1dr (−)ij − v (−)ij

eij ·dr
(−)
ij

eij · v
(−)
ij

2 (10)

and

dr (−)ij — dr (−)i −dr
(−)
j (11)

dv (−)ij — dv (−)i −dv
(−)
j (12)

2.3. The Kinetic Properties of the Thermodynamic

Equilibrium State

We require that the center of mass is at rest and we are interested in
the properties of the equilibrium thermodynamic state at fixed tempera-
ture T. Accordingly, the total linear momenta vanish: Ptot=;N

i=1 mivi=0,
while the total energy is given by

E=C
N

i=1

1
2
miv

2
i=
d
2
(N−1) kBT (13)

where kB is Boltzmann’s constant. For hard-ball systems, the motions at
different temperatures are equivalent up to a rescaling of time. In the
sequel, the temperature is thus fixed at the value T=k−1B .
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In the fluid phase at low enough density, the system is supposed to
be ergodic on each energy-momenta shell, which defines the equilibrium
states. The mean velocity3 of each particle is defined as

3 The mean velocity should be well distinguished from the root-mean-square velocity, defined
as`Ov2i P.

vi — O||vi ||P (14)

At equilibrium, the mean velocities are determined by the temperature
and the mass of the particles. For large particle number, they are given, to
leading order in 1/N, by

d=2: vi==
pkBT
2mi

(15)

d=3: vi==
8kBT
pmi

(16)

where d is the space dimension.
The mean relative velocities between the particles entering a binary

collision will also be of importance in the sequel. They are defined by

vij — O||vi− vj ||P (17)

and are given by Eqs. (15) and (16) with the mass replaced by the relative
mass

mij —
mimj
mi+mj

(18)

If the system is sufficiently dilute the collision frequencies of the fluid
and tracer particles can be evaluated by supposing that each particle has a
cross-section for collision with each one of the other types of particles:

d=2: sij=2(ai+aj) (19)

d=3: sij=p(ai+aj)2 (20)

If sff, sft=stf, and stt denote the cross-sections for fluid–fluid, fluid–
tracer, tracer–fluid, and tracer–tracer collisions, the collision frequencies of
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the tracer and fluid particles to leading order in the fluid density are given
by

nt=ntf+ntt 4
Nf
W
stf vtf+

Nt−1
W
stt vtt (21)

nf=nff+nft 4
Nf
W
sff vff+

Nt
W
sft vft (22)

where vtf=vft and the extension parameter W is the area respectively the
volume of the system:

d=2: W=Lx Ly (23)

d=3: W=Lx Ly Lz (24)

We notice that each tracer particle may collide on the Nt−1 other tracer
particles, which explains the presence of −1 in the tracer–tracer collision
frequency ntt. The term −1 is important in systems with a low number Nt
of tracer particles. In contrast, it can be neglected if the number of particles
is large as it is the case for the fluid particles.

2.4. Simulations and System Preparation

In order to test our theoretical results we performed several MD sim-
ulations in which we computed the Lyapunov spectra of hard ball systems
containing a tracer component. In all these simulations, we consider a fluid
with a single tracer particle, so Nt=1.
To initialize a simulation we locate the fluid particles on the lattice

points of a crystal lattice. In d=2, the initial positions form a triangular
lattice with MxMy rectangular cells of two disks each. In d=3, the initial
positions form a face-centered cubic (FCC) lattice with MxMyMz cubic
cells of four spheres each. The sizes of the cells are fixed in order for the
fluid to have a fixed density n in absence of the tracer particle. In d=2, the
domain is rectangular of sizes

d=2: Lx=Mx
1 2
n`3
2
1
2
and Ly=My

12`3
n
2
1
2

(25)

so that its area is W=LxLy=2MxMy/n. In d=3, the domain is also rec-
tangular but of sizes

d=3: Lx=Mx
14
n
2
1
3
, Ly=My

14
n
2
1
3
, and Lz=Mz

14
n
2
1
3

(26)

so that its volume is W=LxLyLz=4MxMyMz/n.
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Thereafter, the tracer particle is placed in the middle of the crystal
configuration under removal of all the fluid particles that would overlap
with the tracer particle. The number of fluid particles is thus given approx-
imately by

Nf 4 n(W−Wt) (27)

where

d=2: Wt=pA2 (28)

d=3: Wt=
4p
3
A3 (29)

As a result of this procedure the density of the fluid particles in the free
volume is still given to an excellent approximation by n, even if the tracer
particle is so large that it occupies an appreciable fraction of the total
volume W.
Accordingly, the collision frequency of the tracer particle is

nt=nstf vtf (30)

and its mean free path is

at=
vt
nt
4

vt
n stf vtf

(31)

Table I gives these quantities in d=2 and d=3.
Finally, the initial velocities of the particles are drawn with a random

number generator from a Maxwellian distribution with the appropriate
mass. In practice we choose kBT=1 as well as m=1.

Table I. Characteristic Quantities for the Motion of a Tracer in a Dilute Fluid

dimension d=2 d=3

mean velocity vt==
pkBT
2M

vt==
8kBT
pM

collision frequency nt 4 2(a+A) n=
pkBT(m+M)
2mM

nt 4 p(a+A)2 n=
8kBT(m+M)
pmM

mean free path at=
vt
nt
4

1
2(a+A) n

= m
m+M

at=
vt
nt
4

1
p(a+A)2 n

= m
m+M

678 Gaspard and van Beijeren



2.5. Discussion of the Dominance of the Dynamical Instability by

the Tracer

Since there is a single tracer particle it only collides with the fluid
particles. However, each fluid particle may collide both with other fluid
particles and with the tracer particle. Accordingly, there are two types of
collisions: the fluid–fluid collisions and the tracer–fluid collisions.
Since both types of collisions happen between particles with convex

surfaces, we expect that both of them will contribute to the dynamical
instability. As discussed in the introduction, the strongest instability,
characterized by the largest Lyapunov exponent, could be dominated either
by the fluid–fluid collisions, or by the tracer–fluid collisions. To decide
which of these possibilities is realized for a given choice of parameters we
can proceed in the following way: We calculate both the fluid–fluid and the
tracer–fluid maximal Lyapunov exponent under the assumption that indeed
fluid–fluid collisions respectively tracer–fluid collisions are dominant and then
compare the results. In the great majority of cases indeed the larger of the
two calculated exponents gives an excellent approximation to the actual
value of the maximal Lyapunov exponent.
The first calculation concerns the fluid–fluid collisions. In the absence

of tracer, such collisions give the maximal Lyapunov exponent

lf 4 w(Nf) nf ln 5
a(Nf)
4nad
6 with nf 4 nsff vff (32)

where, for disks in d=2, Van Zon et al. (6) have shown that the prefactor
w(N) is well fitted by the expression

w(N) 4 4.311−
3.466
N0.277

, (33)

although the actual asymptotic behavior for large N is as 1/(logN)2. (7)

Further, a(Nf) is of order unity, depends only weakly on Nf and
approaches a constant for Nf Q..
On the other hand, we may consider the motion of the tracer particle

undergoing kicks by independent fluid particles. The equations of motion
are given by Eqs. (1)–(5) in which ri=1=R, vi=1=V. We denote by
(R (−)n , V

(−)
n ) and (R

(+)
n , V

(+)
n ) the position and velocity of the tracer particle

before respectively after the nth collision, which occurs at the time tn. Since
the trajectory is continuous in position, R (+)n =R (−)n — Rn. On the other
hand, V (+)n =V (−)n+1 — Vn. We have the following iteration for the motion
itself:
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Rn=Rn−1+ynVn−1 (34)

Vn=Vn−1−
2 m
m+M

[en · (Vn−1− vn−1)] en (35)

tn=tn−1+yn (36)

where yn is the time interval between the (n−1)th and the nth collision,
while

en —
Rn− rn
A+a

(37)

is the unit impact vector at the nth collision.
An infinitesimal perturbation on the motion is ruled by Eqs. (7)–(12)

in which dri=1=dR, dvi=1=dV and dr
(±)
j =dv

(±)
j =0 for j ] 1 because, if

indeed the tracer particle dominates the maximal Lyapunov exponent, the
perturbations of the fluid particle positions and velocities will be negligibly
small compared to those of the tracer particle. For this argument to hold it
is important that recollisions of a fluid particle with the tracer particle are
either rare, or, if they are not, are still dominated by the perturbations of
the tracer particle. Especially when M± m this is a subtle point, because,
as can be seen from (7)–(12), the perturbations of a fluid particle right after
a collision are comparable to those of the tracer particle. So if a recollision
is not unlikely, it has to occur typically after a time that is long, compared
to the Lyapunov time of the tracer particle. The iteration for an infinite-
simal perturbation on the motion is then given by

free flight: dR (−)n =dR
(+)
n−1+yn dVn−1 (38)

binary collision: dR (+)n =dR
(−)
n −

2 m
m+M

(en ·dR
(−)
n ) en (39)

dVn=dVn−1−
2 m
m+M

{(en ·dVn−1) en

+[den · (Vn−1− vn−1)] en+[en · (Vn−1− vn−1)] den}
(40)

with dVn=dV
(+)
n =dV

(−)
n+1 and

den=
1
A+a
5dR (−)n −(Vn−1− vn−1)

en ·dR
(−)
n

en · (Vn−1− vn−1)
6 (41)
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In the equations above, the perturbation dR (−)n corresponds to the first
impact time of the two neighboring trajectories and the perturbation dR (+)n
to the later impact time. They are related as

dR (+)n =dR
(−)
n +(Vn−1−Vn) dyn; (42)

with the time lag at collision

dyn=−
en ·dR

(−)
n

en · (Vn−1− vn−1)
(43)

These equations can be analyzed thanks to a few observations. First of
all, the time yn between two successive collisions has an average value given
as the inverse of the collision frequency of the tracer particle:

OynP=
1
nt

(44)

Furthermore, we find the mean relative velocity as

O||Vn−1− vn−1 ||P=vtf (45)

We may expect a dominance of the resulting Lyapunov exponents for
the tracer particle over those resulting from the fluid–fluid collisions in two
cases to be discussed below: in the Lorentz-gas limit MQ 0 with M°m,
and in the Rayleigh-flight limit aQ 0 with a° A and nad° 1. The calcula-
tion of these Lyapunov exponents will be the subject of the next two sections.

3. THE LORENTZ-GAS LIMIT

In the limit MQ 0, with M° m, the tracer particle is much faster
than the fluid particles. Accordingly, the tracer moves through a fluid
which is essentially at rest. This system is referred to as a Lorentz gas. (20, 21)

The collision frequency of the tracer particle will thus be larger than the
collision frequency of the fluid particles. Therefore, the perturbations on
the coordinates of the tracer particle will grow faster than the perturbations
on the fluid particles. Actually, the value of the maximal Lyapunov expo-
nent of such a fluid can be predicted in this case thanks to the work by Van
Beijeren, Dorfman, and Latz. (3, 5)

3.1. The Two-Dimensional Case

In d=2, the Lorentz gas has a single positive Lyapunov exponent as a
consequence of chaos and energy conservation. Therefore, we expect that
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the maximal Lyapunov exponent is the positive Lyapunov exponent of the
Lorentz gas when M° m, while the next Lyapunov exponents remain at
the level of the fluid Lyapunov exponent (32). For a dilute system with
M° m, the maximal Lyapunov exponent is therefore given by

d=2: l1 4 2(a+A) n=
pkBT(m+M)
2mM

ln 5 e1−C

2n(a+A)2
6 (46)

with Euler’s constant C=0.5772156649... . (3)
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Fig. 1. Lyapunov spectra of a 2d fluid of density n=10−3 and temperature T=1 composed
of Nf=40 hard disks of radius a=1/2 and mass m=1 with Nt=1 hard disk of radius
A=1/6 and mass: (a) M=10; (b) M=10−2. The squares depict the positive exponents and
the crosses are minus the negative exponents.
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10-3
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10-3 10-2 10-1 100 101

ν t

M

Fig. 2. Collision frequency nt of the tracer particle in a 2d fluid of density n=10−3 and
temperature T=1 composed of Nf=40 hard disks of radius a=1/2 and mass m=1 with
Nt=1 hard disk of radius A=1/6 and varying mass M. The filled circles are the numerical
data. The solid line is the prediction of Eq. (30) (see Table I).

This behavior is well confirmed by numerical computation. Figure 1
compares Lyapunov spectra forM± m and forM° m at a fixed ratio of
a and A. We observe that the maximal Lyapunov exponent is separated
from the rest of the spectrum forM° m. This implies that with increasing
m/M a gap opens up in the Lyapunov spectrum.
Figure 2 shows that in the limit MQ 0 the collision frequency of the

tracer particle increases as predicted by Eq. (30) in the limitMQ 0.
Figure 3 depicts the five largest Lyapunov exponents as a function of

the mass of the tracer particle showing that, indeed, the Lyapunov spec-
trum is dominated by the tracer particle as soon as M° m. The maximal
Lyapunov exponent undergoes a cross-over from the fluid value (32) for
M N m to the Lorentz-gas value (46) for M° m. In the regime M° m,
the second Lyapunov exponent tends to slightly increase up to the fluid
value (32) l2 4 lf < l1. A similar behavior is seen for the next Lyapunov
exponents.
Figure 4 shows the dependence of the spectrum on the radius A of the

tracer particle. As the tracer becomes larger and larger in a fluid of fixed
density, the room for its motion between the fluid particles becomes rela-
tively smaller and smaller. A cage effect occurs for a large tracer as though
the effective density of the Lorentz gas would increase (indeed the motion
of a mobile particle of radius A among fixed point scatterers is completely
equivalent to that of a mobile point particle among fixed scatterers of
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Fig. 3. The five largest Lyapunov exponents of a 2d fluid of density n=10−3 and tempera-
ture T=1 composed of Nf=40 hard disks of radius a=1/2 and mass m=1 with Nt=1 hard
disk of radius A=1/6 and varying mass M. The filled circles depict the largest Lyapunov
exponent and the open circles the four next ones. The solid line is the prediction of Eq. (46).

radius A that are allowed to overlap each other. In the literature this has
been treated as the Lorentz gas with overlapping scatterers). In this case,
the assumption at/A± 1, on which the demonstration of (46) is based,
breaks down, which explains the discrepancy observed in Fig. 4 for A± a
between the numerical results and the prediction of Eq. (46).
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Fig. 4. The five largest Lyapunov exponents of a 2d fluid of density n=10−3 and tempera-
ture T=1 composed of Nf hard disks of radius a=1/2 and mass m=1 with Nt=1 hard disk
of varying radius A and mass M=10−2 (Nf=40 for A < 10, Nf=39, 37, and 31 for the last
three values of A > 10). The filled circles depict the largest Lyapunov exponent and the open
circles the four next ones. The solid line is the prediction of Eq. (46).
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3.2. The Three-Dimensional Case

In d=3, the Lorentz gas has two positive Lyapunov exponents as a
consequence of chaos and energy conservation. In this case, we thus expect
that the two largest Lyapunov exponents are the positive Lyapunov expo-
nents of the Lorentz gas whenM° m, while the next Lyapunov exponents
remain at the levels of the fluid Lyapunov exponents (32). For a dilute
system with M° m, the two largest Lyapunov exponents are therefore
given by (5)

d=3:

l1 4 p(a+A)2 n=
8kBT(m+M)
pmM

ln 5 4 e
−1
2
−C

np(a+A)3
6 (47)

l2 4 p(a+A)2 n=
8kBT(m+M)
pmM

ln 5 e
+1
2
−C

np(a+A)3
6 (48)

The next Lyapunov exponent should remain at the fluid value (32): l3 4
lf < l2 < l1.
Here again, this behavior is well confirmed by numerical computation.

Figure 5 depicts a Lyapunov spectrum for M° m where we observe that,
indeed, two Lyapunov exponents are separated from the rest of the spec-
trum, again with the formation of a gap as m/M increases. Figure 6 depicts
the five largest Lyapunov exponents as a function of the mass of the tracer
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Fig. 5. Lyapunov spectrum of a 3d fluid of density n=10−3 and temperature T=1
composed of Nf=48 hard spheres of radius a=1/2 and mass m=1 with Nt=1 hard sphere
of radius A=1/6 and mass M=10−2. The squares depict the positive exponents and the
crosses are minus the negative exponents.
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Fig. 6. The five largest Lyapunov exponents of a 3d fluid of density n=10−3 and tempera-
ture T=1 composed of Nf=48 hard spheres of radius a=1/2 and mass m=1 with Nt=1
hard sphere of radius A=1/6 and varying mass M. The filled circles depict the two largest
Lyapunov exponents and the open circles the three next ones. The solid lines are the predic-
tions of Eqs. (47) and (48).

particle showing that the Lyapunov spectrum is dominated by the tracer
particle as soon as M° m. The two largest Lyapunov exponents undergo
a cross-over from the fluid values when M± m to the Lorentz-gas values
(47) and (48) for M° m. In the regime M° m, the third and next
Lyapunov exponents tend to slightly increase up to the values of the first
and next Lyapunov exponents of the previous regimeM± m.

4. THE RAYLEIGH-FLIGHT LIMIT

Another regime in which we may expect that the tracer particle domi-
nates the Lyapunov spectrum is the one near the limit where the radius of
the fluid particles vanishes: aQ 0. This regime can be characterized by the
conditions A± a and nad° 1. In the limit, the fluid particles have no
collisions between each other, but only with the tracer particle. This is
referred to as the Rayleigh-flight limit and is known to present diffusive
motion. (22, 23) In the limit aQ 0 the fluid Lyapunov exponents (32) vanish.
The tracer particle undergoes elastic, diverging collisions with the fluid.
Since the tracer dynamics has d degrees of freedom, and the presence of the
fluid particles precludes symmetry transformations of the tracer coordi-
nates alone, we expect the existence of d positive Lyapunov exponents.
In the Rayleigh-flight regime, we may thus expect that the dynamical
instability of the fluid is dominated by the tracer particle, which is con-
firmed by the analysis given below. We want to remark here that the
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Rayleigh-flight limit provides an example of a system where the Lyapunov
exponents remain well-defined in the infinite system limit. In fact taking
this limit simplifies the analysis, because it largely limits the possibilities of
recollisions.

4.1. Dynamical Instability in the Rayleigh Flight

Before considering the problem of the full fluid with a ] 0, let us con-
sider the dynamical instability of the tracer particle in an infinite domain
filled with an ideal gas of fluid particles without mutual interaction. The
fluid particles of mass m are coming from infinity with velocities distrib-
uted according to a Maxwell–Boltzmann distribution with temperature T
and have a uniform spatial distribution with density n. In the limit aQ 0
the fluid particles have an infinite mean free path. The only possible colli-
sions occur with the tracer particle. We notice that a fluid particle may
collide more than once with the tracer particle. However, recollisions are
rare if either of the conditionsM/m± 1 or lt/(A+a)± 1 are satisfied. It
will turn out that in order for the tracer particle to be dominant, at least
one of these conditions has to hold and therefore we will neglect recolli-
sions in the sequel.
At each collision, the velocity v=vn−1 of the fluid particle is a random

vector of Maxwell–Boltzmann distribution

P(v)=1 m
2pkBT
2
d
2
exp 1 − mv2

2kBT
2 (49)

Since the spatial distribution of the fluid particles is uniform the impact
positions are distributed uniformly over the cross-section. If f=fn denotes
the angle between the impact unit vector en with the relative velocity
vn−1−Vn−1

cos fn=−
en · (Vn−1− vn−1)
||Vn−1− vn−1 ||

, (50)

the uniform distribution of the impact positions implies that the collision
angle is distributed according to

d=2: P(f)=cos f (51)

d=3: P(f)=sin 2f (52)

for f ¥ [0, p2]. At low density and for M± m, the successive collisions
undergone by the tracer particle occur at random time intervals y=yn

When Do Tracer Particles Dominate the Lyapunov Spectrum? 687



which, for given speed V=||Vn−1 || of the tracer particle are distributed
according to an exponential probability distribution of mean intercollision
time Oy(V)P=1/nt(V):

P(y)=nt(V) exp[− nt(V) y] (53)

In the limit M/mQ. the velocity dependence of the collision frequency
disappears.
If the recollisions are neglected, the parameters (vn−1, yn, en) of the

successive collisions are independent random variables, though for finite
mass ratio their distribution does depend on the tracer speed V. Therefore,
the tracer particle follows a random process which can be numerically
simulated by a Monte-Carlo method. The growth factors of infinitesimal
perturbations on the position and velocity of the tracer particle also follow
a stationary random process.
Two regimes can be distinguished, depending on the value of the

parameter

c —
m

M+m
1

n(A+a)d
’= m
M+m

at

A+a
(54)

This parameter is always smaller than the ratio of the mean free path at of
the tracer particle to the collisional radius A+a since m/(m+M) [ 1.
For c± 1 the dynamics in tangent space is very similar to that of a

Lorentz gas. Typically the position perturbation of the tracer particle when
entering a collision with a fluid particle, can be approximated by the
product of its velocity perturbation and the free flight time since the pre-
vious collision. Since at ± A+a in this case, the dynamical instability is
essentially dominated by the large distance to the next collision that ampli-
fies the perturbation on initial conditions by the ratio at/(A+a) (see
Fig. 7a). Therefore, the maximal Lyapunov exponent can be calculated
again by just considering the dynamics from one collision through the next
one and averaging over the parameters of such an event. In fact, the
Lorentz gas regime may be considered as a special subset of the class of all
systems meeting the requirement c± 1. This condition alone, together with
the requirement that the resulting maximal tracer Lyapunov exponent
exceeds the maximal fluid Lyapunov exponent, is sufficient to have domi-
nance of the tracer particle.
For c° 1 typically also the relative changes of the perturbations in a

collision are much smaller than unity. A possible typical situation is illus-
trated in Fig. 7b in this case. Therefore, we may describe the dynamics
in tangent space to a good approximation by a Fokker–Planck equation.
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(a) (b)

Fig. 7. Typical geometry of two successive collisions of the tracer particle when: (a)
at ± A+a; (b) at ° A+a. The trajectories are depicted in the frame where the fluid particle is
at rest.

Even though we have not found an analytical solution for this, we can infer
several important properties from it, especially we can find out how the
maximal Lyapunov exponent scales with the parameter c.

4.1.1. The Regime c± 1

In this regime, we can use Krylov’s argument (17) to estimate the
maximal positive Lyapunov exponent as follows. If c± 1, Eq. (41) shows
that a perturbation on the impact unit vector can be estimated as

den ’
at

A+a
dhn−1 (55)

where dhn−1 is a perturbation on the angle of the tracer velocity. If we sub-
stitute this estimation into Eq. (40) we can conclude that the perturbation
on the tracer velocity angle should grow on average as

dhn ’
m

M+m
at

A+a
vtf
vt
dhn−1 ’ c dhn−1 (56)

in a collision. Accordingly, the maximal Lyapunov exponent behaves as
lt ’ nt ln c.
The Monte-Carlo simulation confirms this expectation. Using the last

expression of Table I in Eq. (56), we find that the numerical results for the
maximal Lyapunov exponent of the tracer are well represented by

c± 1: lt 4 nt ln 5
m

M+m
at

n(A+a)d
6 (57)

with the constant at=exp(1−
3
2 C)/(2p

1/2)=0.322..., in the limit M± m
for d=2. This agrees well with our simulation results, which give a fitting
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value for at of 0.33±0.05. In the Lorentz-gas limitM° m, the quantity at
also tends to a constant value, given by at=e1−C/2=0.763... for d=2,
as may be seen from Eq. (46). The second positive Lyapunov exponent l −t
turns out to have a different dependence on A+a which we have not
investigated theoretically yet.

4.1.2. The Regime c° 1

In this regime, the dynamical instability is weaker. The perturbation
on average only grows by a factor slightly larger than unity at each
collision. From the Lyapunov instability, together with the relationship
d
dt dR=dV, it is clear that, in the mean, the velocity and position perturba-
tions of the Brownian particle are related through dV ’ ltdR. Due to the
Brownian fluctuations in the system, dV will in fact constantly fluctuate
around the value lt dR, both in magnitude and in direction. To charac-
terize these fluctuations we develop a continuous-time description of the
dynamical instability similar to the one developed by Van Zon in another
context. (24)We introduce the variables x and y, defined through

x —
dR ·dV
dR2

=
dV||
||dR||

(58)

y —
dV−x dR
||dR||

=
dV+

||dR||
(59)

The variables x and y — ||y|| describe the ratio’s of velocity to position per-
turbations of the tracer particle, for the components parallel and perpen-
dicular to dR respectively.
They allow us to obtain the maximal Lyapunov exponent as

lt= lim
TQ.

1
T
ln
||dR(t)||
||dR(0)||

= lim
TQ.

1
T

F
T

0
dt
d
dt
ln ||dR(t)||

= lim
TQ.

1
T

F
T

0
dt x(t) (60)

because

x=
d
dt
ln ||dR|| (61)
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and, again, ddt dR=dV. Accordingly, the maximal Lyapunov exponent is
given by the time average of the variable x. By ergodicity, this time average
is equal to the statistical average over the stationary probability distribu-
tion of x:

lt=OxP (62)

During each free flight between two collisions, the variables x and y
have the form

x=
ay+b

ay2+2by+c
(63)

y=
±`ac−b2

ay2+2by+c
(64)

with y=t−tn−1 and

a=(dVn−1)2, b=dR (+)n−1 ·dVn−1, and c=(dR (+)n−1)
2 (65)

The ratio x/y is a linear function of time so that

K —
d
dt
1x
y
2=x

2+y2

y
(66)

is a constant for the time evolution of x and y during the free flights.
Without collisions, the variables x and y thus satisfy equations of motion

ẋfree=−x2+y2=+y2 “yK

ẏfree=−2xy=−y2 “xK
(67)

However, the variables x and y undergo a jump at each collision of the
tracer particle with the fluid particles. Accordingly, the time evolution of
these quantities is ruled by the following coupled stochastic equations

ẋ=−x2+y2+ẋcoll (68)

ẏ=−2xy+ẏcoll (69)
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with

ẋcoll=
dR ·dV̇coll
dR2

(70)

ẏcoll=
dV̇coll−r(r ·dV̇coll)

||dR||
, (71)

where we introduced the unit vector

r —
dR
||dR||

(72)

which is orthogonal to the unit vector s — y/y.
The jumps in the perturbation on the velocity are determined by

Eq. (40) in the following form

dV̇coll= C
+.

n=−.
(dVn−dVn−1) d(t− tn) (73)

Accordingly, the collisional contributions (70) and (71) take the forms

ẋcoll= C
+.

n=−.
tn d(t− tn) (74)

ẏcoll= C
+.

n=−.
gn d(t− tn) (75)

To simplify our analysis we assume in the sequel that the mass ratio
m/(M+m) is very small.4 As a result the relative velocity between tracer

4 Even if this is not the case our main results, notably the way in which the maximal Lyapunov
scales with c, remain valid. But the specific analysis is more complicated, because the simpli-
fications made at this point do not apply.

and fluid particles may be approximated by minus the velocity of the fluid
particle, the collision frequency of the tracer particle becomes velocity
independent and also the stationary distribution of the variables x and y
becomes independent of the velocity of the tracer particle. The expressions
for the jumps tn and gn simplify to leading order in

m
M+m° 1. In particular,

in Eq. (40) the terms proportional to dV may be neglected. In addition, in
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relative velocities the contributions of the tracer particle may be ignored.
Using Eq. (40), we obtain, with these simplifications:

tn 4
2m

(m+M)(a+A)
||vn−1 || 5

(en ·rn)2

en ·un
− en ·un6 (76)

gn 4
2m

(m+M)(a+A)
||vn−1 || 5

(en ·rn)2

en ·un
rn−

en ·rn
en ·un

en+(rn ·un) en−(en ·rn) un6

— gn yn , (77)

with the unit vector

un — −
vn−1
||vn−1 ||

, (78)

and with yn a unit vector orthogonal to rn. Since the successive jumps may
be assumed to be statistically independent random variables, the time
evolution in tangent space of an ensemble of tracer particles may be
described by a Boltzmann equation for the distribution of x and y, of the
form

“tf+“x[(−x2+y2) f]+“y[(−2xy) f]

=nt F
+.

−.
dt F

.

0
dg F

−

dy P(t, g, y) [f(x−t, y−gy, t)−f(x, y, t)]
(79)

Here P(t, g, y) is the distribution function for jumps t and gy in x respec-
tively y as result of a collision of the tracer particle with a fluid particle.
The form of this distribution may be obtained from Eqs. (40) and (41),
combined with the Maxwell distribution for the fluid particle velocity vn−1
and the distribution of the impact vector den for given Vn−1− vn−1. We used
here that the terms in Eq. (40) proportional to (en ·dVn−1) en may be
neglected, as result of which P(t, g, y) becomes independent of x and y.
This is justified because of our condition c° 1, as can be seen on hindsight
by comparing this term to the remaining terms in (40), approximating dR
by dV/lt in the latter [see Eqs. (76) and (77)]. The prime on the integral
over y indicates an integration over the d−1-dimensional unit sphere
orthogonal to r. One readily sees that in fact P(t, g, y) as function of y is
distributed uniformly over this unit sphere. Moreover, this distribution
has long tails due to so-called grazing collisions, i.e., collisions with small
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scattering angles. As one sees from the second term in (41) these may give
rise to arbitrarily large jumps in x and y of the order of

tn, gn ’
nt c

cos fn
(80)

As a consequence of the distribution (51), in d=2, or (52), in d=3 the
tails of the probability density behave as

P(t, g, y) ’ ˛
n2t c

2

|t|3
for |t|Q.

n2t c
2

|g|3
for |g|Q.

(81)

Therefore the first moments of this distribution exist. However, the slow
decay of the distribution for large jumps leads to logarithmic divergences of
the second moments of P.
When the jumps in x and y at collisions are mostly small compared to

the typical magnitudes of x and y themselves, it seems appropriate approx-
imating the Boltzmann equation by a Fokker–Planck equation. For this
to be the case we again need the condition c° 1. But in addition, the
approximation of the Boltzmann equation (79) by a Fokker–Planck equa-
tion requires the existence of the second moments of the distribution
P(t, g, y). As we just noticed, these moments do not exist. But their diver-
gence is only logarithmic and therefore the process, to leading order in c,
can still be described by a Fokker–Planck equation. The typical scale for
the jumps in x and y is of order t, g ’ ntc with c° 1. Consequently, if we
introduce a cut-off in the calculation of the second moment at values of t
and g satisfying

tcut-off, gcut-off ’ nt c1−d, (82)

with some d > 0, most of the distribution P falls within the cut-offs. We
will justify this cut-off below by an argument of self-consistency, and at the
same time determine the appropriate value of d. Utilizing the cut-off, we
obtain the following Fokker–Planck equation:

“tf+“x[(−x2+y2+m||) f]+“y[(−2xy) f]=D|||| “
2
xf+D++ “

2
yf (83)

where the drift in x is given by the first moment of the distribution P as

m||=nt OtP (84)
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and the ‘‘diffusion coefficients’’ are defined as

D||||=
1
2
nt O(t−OtP)2P (85)

D++=
1

2(d−1)
nt Og

2P (86)

where d is the space dimension. There is no drift in y because OgP=0 by
symmetry. For the same reason, the coefficient of cross-diffusion in x and y
vanishes.
Furthermore, in the limit M/mQ. we are considering, one has

OV̇collP=0 by isotropy, irrespective of V and R. Therefore also OdV̇collP
and, according to (70) and (74), OẋcollP and OtP vanish. A non-zero m|| may
be obtained by placing the Brownian particle in a harmonic well, a case we
are investigating presently. From the expressions (76) and (77) and the cut-
offs (82) the diffusion coefficients may be estimated to behave as

D||||=
1
2
nt Ot

2P ’ n3t c
2 ln
1
c
, (87)

D++=
1

2(d−1)
nt Og

2P ’ n3t c
2 ln
1
c
, (88)

Note that Eq. (83) has solutions that are independent of y. It is precisely
those solutions that we are interested in.
Continuing with hard spheres we note that, with vanishing first

moments, the Fokker–Planck equation may be rescaled by applying the
scalings xQ xo

1
3, y Q yo

1
3, and tQ to−

1
3. This allows us to extract the

dependence of the variables on the expression o — n3t c
2 ln(1/c). The only

remaining parameter that might change on varying the ratio’s of masses
and diameters is the ratio D++/D||||. But even this will change just very
slightly, and in fact only does so because the cut-offs on t and g in deter-
mining the second moments introduce a c-dependence which works out
somewhat differently for D|||| and D++ . In the limit oQ. this ratio has a
well-defined limit.
From this scaling we may conclude immediately that OxP, and hence

the maximal Lyapunov exponent, scales as o1/3 and we finally obtain that

lt=OxP ’ nt 1c2 ln
1
c
2
1
3

(89)

with the parameter c defined in (54).
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A discussion is now in order to justify the introduction of the cut-off.
As mentioned already, the second moments of the distribution P(t, g, y)
diverge logarithmically. This implies that in principle we should stick with
the Boltzmann equation (79). Still, the typical scale for the jumps in x and
y is of order c, whereas the typical scale for variations of x and y is
expected to be at least approximately of order c2/3, so much larger. There-
fore, the approximation of f(x−t, y−gy, t)−f(x, y, t) in (79) by a second
order Taylor expansion should still be correct for values of |t| and |g| up to
cc2/3, with c some small positive constant. In addition it can be estimated
that the contributions to the Boltzmann equation from |t|- and |g|-values
outside the cut-off are smaller by at least a factor of order (ln 1c)

1/3 than the
terms kept in the Fokker–Planck approximation. In this way, it is justified
to introduce a cut-off of the form (82), with d=1

3 , which establishes the self-
consistency of the scheme.
The numerical computation shows that, indeed, the maximal Lyapunov

exponent is of the form (89) for c° 1, as seen in Fig. 8. The logarithmic
correction turns out to be very small. We further observed that the second
largest Lyapunov exponent also scales as (89).

Remark. The logarithmic divergences of the second moments of the
distribution P are an anomaly of the hard-ball potential. For smooth
potentials these moments are well-defined.
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Fig. 8. Ratio of the maximal Lyapunov exponent lt to the collision frequency nt versus the
mass M for a tracer disk of radius A=499.5 in Rayleigh flight in the regime c° 1. The
Lyapunov exponent is calculated by Monte-Carlo simulation by assuming that the tracer par-
ticle undergoes independent successive random collisions from fluid disks of radius a=0.5
and mass m=1 at density n=10−8 and temperature T=1. The straight line has the theoreti-
cally expected slope 2/3.
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4.2. The Full Fluid Dynamics

We now consider a fluid of small hard disks of radius a=1
2 and mass

m=1 with a tracer disk of radius A and mass M. The temperature is
always T=1. In order to find the conditions under which the tracer par-
ticle dominates the Lyapunov spectrum we proceed as follows.
We notice that the limit aQ 0 is equivalent to the conditions A± a and

nad° 1. Therefore, we consider a sequence of systems of lower and lower
density n. In the limit nQ 0, three types of tracer disks are considered:

(i) A=
1
2
, M=1, (90)

(ii) A=5, M=100, (91)

(iii) A=
1

2`n
, M=10. (92)

The specific purpose of the last choice is to consider sequences of Brownian
particles of increasing sizes, but all made of the same material, so the ratio
of M to nm(a+A)2 remains constant. In Fig. 9 the maximal Lyapunov
exponent is plotted versus the density.
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Fig. 9. Maximal Lyapunov exponent of a 2d fluid of temperature T=1 and varying density
n containing Nf 4 40 hard disks of radius a=1/2 and mass m=1 with one tracer disk of
radius A and mass M in the three cases (92). In the reference case A=1/2 and M=1, the
maximal Lyapunov exponent l1 is depicted by the crosses and the fit by the solid line. In the
case A=5 and M=100, l1 is depicted by the open squares and the fit by the dashed line. In
the case A=1/(2`n) andM=10, l1 is depicted by the filled squares. The long-short dashed
line is the fit l1=0.75`n.
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Case (i) is the reference situation in which all disks are identical and
we recover the pure fluid behavior (32), as expected. Indeed, a best fit of
the numerical data to a linear combination of n ln n and n yields

lf=−10.9n ln n−19.0n, (93)

with the coefficient of the leading term in agreement with the value pre-
dicted by Eq. (32): −2`p w(41)=−10.89.
Both cases (ii) and (iii) are examples of Brownian motion, as both A/a

and M/m are ± 1. In case (ii) the parameter c changes from ± 1 for the
larger of the density values considered to ° 1 for the lowest densities. In
case (iii) c remains almost fixed at a value of 4/11. The values of A/a and
M/m chosen in case (ii) are such that the fluid always dominates the
maximal Lyapunov exponent. This is clearly confirmed by the simulation
results, which show that l1 4 lf.
In case (iii), in contrast, the tracer particle dominates the Lyapunov spec-

trum at low densities as observed in Fig. 9. Indeed, because A=1/(2`n),
we infer from both Eq. (57) and (89) that

lt ’ nt ’`n (94)

while the fluid Lyapunov exponent takes the values following from (93) so
that lf ° lt for nQ 0. This explains the behavior observed in Fig. 9. We
notice that case (iii) is intermediate between the two regimes, c± 1 respec-
tively c° 1 studied in subsection 4.1, because the mean free path of the
tracer is only slightly smaller than the tracer radius. Indeed, in case (iii) we
have at 4 0.3n−

1
2 < A+a 4 0.5n−

1
2 . Therefore neither (57) nor (89) strictly

applies, but the scaling of the maximal Lyapunov exponent as `n remains
valid.
However, with a system of one tracer disk among about 40 small

disks, we are still in a situation very different from the Rayleigh flight
because of the periodic boundary conditions and the boundedness of the
domain. Even if the mean free path of the fluid particles among themselves
is much larger than the size of the system vf/nff ± Lx, Ly the fluid particles
have recollisions on the tracer particle because of the periodic boundary
conditions. When (A/2a)d−1±Nf the dynamics of the fluid particles is
dominated by recollisions with the tracer particle. We are then in a situa-
tion, similar to the Sinai billiard in which a point particle (such as a fluid
particle) collides on a large disk (i.e., the tracer particle) in a system with
periodic boundaries. This leads to two effects.
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The first effect is that, in the limit where the tracer particle is very
massive, the fluid particles become almost independent of each other.
Therefore the Lyapunov spectrum becomes similar to Nf copies of the
Lyapunov spectrum (+lS, 0, 0, −lS) of the Sinai billiard. In the limit
MQ., we should thus expect a Lyapunov spectrum of the form
(+lS,...,+lSz

Nf

, 0,..., 0z
2Nf

, −lS,..., −lSz
Nf

) in d=2. This tendency is indeed

observed in Fig. 10 which compares two systems of different sizes with an
identical tracer particle and at the same density. We observe in Fig. 10 that
indeed the positive Lyapunov exponents roughly separate into two equally
populated families. This tendency is stronger for the 40-particle system
than for the 80-particle one, as was to be expected in view of the preceding
arguments. In the limit Lx, Ly Q., we notice that the Lyapunov exponent
of the Sinai billiard vanishes as lS ’ (vf/Lx, y) ln(Lx, y/A) so that this effect
tends to disappear.
The second effect due to the periodic boundary conditions is more

important for our present considerations than the previous one. If the
recollisions of a fluid particle with the tracer particle become more frequent
than collisions with other fluid particles these may have an important, or
even dominant effect on the growth of the perturbations on the tracer
coordinates. As a consequence, the maximal Lyapunov exponent of the
system may be different from the Rayleigh-flight value even though the
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Fig. 10. Lyapunov spectra of a 2d fluid of temperature T=1 and density n=10−8 contain-
ing respectively Nf=39 (large squares) and Nf=83 (small squares) hard disks of radius
a=1/2 and mass m=1 with one tracer disk of radius A=5000 and mass M=10 as a func-
tion of the relative index i/(2N) of the Lyapunov exponents l i.
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tracer particle dominates and controls it. This effect may even remove the
gap in the Lyapunov spectrum, as seen in Fig. 10. Notice that a small but
finite density of large tracer particles will have exactly the same type of
effects on the Lyapunov spectrum of a large or even infinite system as
periodic boundary conditions in the case of a single tracer particle.
In the limit where the system becomes infinite, we expect that both

effects disappear and that a gap does appear in the Lyapunov spectrum.
This is indeed the case, as observed in Fig. 11 showing the five largest
Lyapunov exponents for systems with the same density n=10−8 and tem-
perature T=1, the same tracer particle of radius A=5000 and mass
M=10, but an increasing total size and so an increasing number Nf of
fluid particles. Under these conditions, the limiting Rayleigh flight would
have the following two positive Lyapunov exponents, obtained by Monte-
Carlo simulation:

d=2, n=10−8, T=1, A=5000, M=10:

lt=(3.3±0.1)×10−5, l
−

t=(0.6±0.1)×10
−5

(95)

For the full dynamics simulated by molecular dynamics, we observe in
Fig. 11 that the maximal Lyapunov exponent decreases as Nf Q. to a
value close to the maximal Lyapunov exponent lt of the Rayleigh flight.
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Fig. 11. The five largest Lyapunov exponents of a 2d fluid of temperature T=1 and density
n=10−8 containing a varying number Nf=39, 83, 143, 239, 359, 503, 671, 863 of hard disks of
radius a=1/2 and mass m=1 with one tracer disk of radius A=5000 and mass M=10
versus 1/Nf. The Rayleigh-flight value of the maximal Lyapunov exponent is lt 4 3.3 10−5.
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The next exponents decrease faster, creating a gap in the Lyapunov spec-
trum. We notice that, for the systems we studied, the second exponent has
not yet converged to the Rayleigh-flight value l −t and is therefore not
separated from the third and next exponents, but we expect this to occur
for Nf large enough.
In the Rayleigh-flight limit, aQ 0, combined with the large system

limit Nf Q., we therefore find a Lyapunov spectrum that is dominated by
the dynamical instability of the tracer particle:

l1 4 lt > l2 4 l
−

t ± l3 > l4 > · · · , (96)

with the formation of a gap, as in the case of the Lorentz-gas limit, but
here because of a very different mechanism.

5. CONCLUSIONS

In this paper, we have studied a system of hard balls in elastic colli-
sions (disks in d=2 and spheres in d=3) and we have shown that the
tracer particle dominates the Lyapunov spectrum in the Lorentz-gas and in
the Rayleigh-flight limit.
In the Lorentz-gas limit, the tracer particle is lighter and moves faster

than the fluid particles. The tracer particle therefore has a higher collision
frequency than the other particles. Since the maximal Lyapunov exponent
is proportional to the collision frequency, a gap appears in the Lyapunov
spectrum between the largest Lyapunov exponents, which are associated
with the tracer particle, and the rest of the spectrum. In d=2, there is
one such positive Lyapunov exponent associated with the tracer and, in
d=3, there are two such exponents. These largest Lyapunov exponents
take values very close to the Lorentz-gas values previously obtained by
Van Beijeren, Dorfman, and Latz, (3, 5) as confirmed by direct numerical
computation.
The other limit in which the tracer particle dominates the Lyapunov

spectrum is the Rayleigh-flight limit. In this limit, the radius of the fluid
particles tends to zero or, equivalently, the density of the fluid particles
vanishes while the radius of the tracer is much larger than the radius of
the fluid particles. In an infinite system, the only collisions would occur
between the fluid particles and the lone tracer particle. We have shown the
remarkable result that, even in this limit where the fluid is ideal and
composed of non-interacting particles, the tracer particle may have positive
Lyapunov exponents. We obtained formulas for the dependence of the
maximal Lyapunov exponent on the parameters of the system in two dif-
ferent regimes. In the first regime, where the mean free path of the tracer
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particle is so much larger than its radius that perturbations of its coordi-
nates are multiplied by large factors at almost all collisions, we find a
behavior again very similar to that of the Lorentz gas. In the other regime,
where the effect of a single collision on average is very small, we found that
the maximal Lyapunov exponent scales as the product of the tracer particle
collision frequency and the two-third power of the mass ratio m/(m+M),
up to logarithmic corrections. These logarithmic corrections are special for
the hard-ball potential and do not occur for more realistic interactions.
Moreover, we have shown that the positive Lyapunov exponents deter-
mined by the tracer dynamics may dominate the Lyapunov spectrum of the
fully interacting system under conditions approaching the Rayleigh-flight
limit, provided the density of tracer particles, or alternatively the ratio
between system size and tracer radius, remains finite. Again, a gap appears
in the Lyapunov spectrum between the largest Lyapunov exponents asso-
ciated with the tracer particle and the rest of the spectrum.
The different tracer-dominated regimes are depicted in Fig. 12 as a

function of the mass ratio M/m and the radius ratio A/a for two different
densities of a two-dimensional fluid. The diagrams are qualitatively similar
for a three-dimensional fluid. Figure 12 shows that the system is in a fluid-
dominated regime if the tracer is very massive. Nevertheless, we observe in
Fig. 12b that the tracer-dominated regimes extend toward larger masses at
lower densities.
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Fig. 12. Diagrams of the different regimes of the d=2 systems composed of a tracer particle
of radius A and mass M in a fluid of particles of radius a and mass m at density (a) n=10−5

and (b) n=10−10 and temperature T=1. The area above the solid line shows the fluid-
dominated regime with lf > l t. The areas below the solid line show the tracer-dominated
regimes with lt > lf. The area on the lower left-hand side is the tracer-dominated regime with
c > 1, while the area on the lower right-hand side is the tracer-dominated regime with c < 1.
The Lorentz-gas limit is the part of the lower area whereM° m.
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A comment is here in order about Brownian motion. In typical
Brownian motion conditions, the tracer particle is much more massive than
the fluid particles and, moreover, the mean free path of the fluid particles
among themselves is much shorter than the radius of the Brownian particle.
Under such conditions the maximal Lyapunov exponent of the full system
usually is essentially the same as the fluid Lyapunov exponent, as seen in
Fig. 12. Then the Brownian particle does not contribute significantly to the
dynamical instability of the system and is a probe for the dynamics of the
surrounding fluid. This is the case in typical Brownian-motion experiments.
In order to observe the new effect of dominance of the dynamical instabil-
ity by the Brownian particle one has to use a sufficiently rarefied gas as
surrounding fluid, in order to approach to the Rayleigh-flight limit, as seen
in Fig. 12b.
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